Line data Source code
1 : #include "Module.h"
2 :
3 : // the following is probably only needed on non-Arduino builds
4 : #include <stdio.h>
5 : #include <string.h>
6 :
7 : #if defined(RADIOLIB_BUILD_ARDUINO)
8 : #include "hal/Arduino/ArduinoHal.h"
9 :
10 : Module::Module(uint32_t cs, uint32_t irq, uint32_t rst, uint32_t gpio) : csPin(cs), irqPin(irq), rstPin(rst), gpioPin(gpio) {
11 : this->hal = new ArduinoHal();
12 : }
13 :
14 : Module::Module(uint32_t cs, uint32_t irq, uint32_t rst, uint32_t gpio, SPIClass& spi, SPISettings spiSettings) : csPin(cs), irqPin(irq), rstPin(rst), gpioPin(gpio) {
15 : this->hal = new ArduinoHal(spi, spiSettings);
16 : }
17 : #endif
18 :
19 4 : Module::Module(RadioLibHal *hal, uint32_t cs, uint32_t irq, uint32_t rst, uint32_t gpio) : csPin(cs), irqPin(irq), rstPin(rst), gpioPin(gpio) {
20 4 : this->hal = hal;
21 4 : }
22 :
23 0 : Module::Module(const Module& mod) {
24 0 : *this = mod;
25 0 : }
26 :
27 0 : Module& Module::operator=(const Module& mod) {
28 0 : memcpy(reinterpret_cast<void*>(&(const_cast<Module&>(mod)).spiConfig), &this->spiConfig, sizeof(SPIConfig_t));
29 0 : this->csPin = mod.csPin;
30 0 : this->irqPin = mod.irqPin;
31 0 : this->rstPin = mod.rstPin;
32 0 : this->gpioPin = mod.gpioPin;
33 0 : return(*this);
34 : }
35 :
36 : static volatile const char info[] = RADIOLIB_INFO;
37 4 : void Module::init() {
38 4 : this->hal->init();
39 4 : this->hal->pinMode(csPin, this->hal->GpioModeOutput);
40 4 : this->hal->digitalWrite(csPin, this->hal->GpioLevelHigh);
41 : RADIOLIB_DEBUG_BASIC_PRINTLN(RADIOLIB_INFO);
42 4 : }
43 :
44 4 : void Module::term() {
45 : // stop hardware interfaces (if they were initialized by the library)
46 4 : this->hal->term();
47 4 : }
48 :
49 10 : int16_t Module::SPIgetRegValue(uint32_t reg, uint8_t msb, uint8_t lsb) {
50 10 : if((msb > 7) || (lsb > 7) || (lsb > msb)) {
51 6 : return(RADIOLIB_ERR_INVALID_BIT_RANGE);
52 : }
53 :
54 4 : uint8_t rawValue = SPIreadRegister(reg);
55 4 : uint8_t maskedValue = rawValue & ((0b11111111 << lsb) & (0b11111111 >> (7 - msb)));
56 4 : return(maskedValue);
57 : }
58 :
59 16 : int16_t Module::SPIsetRegValue(uint32_t reg, uint8_t value, uint8_t msb, uint8_t lsb, uint8_t checkInterval, uint8_t checkMask, bool force) {
60 16 : if((msb > 7) || (lsb > 7) || (lsb > msb)) {
61 6 : return(RADIOLIB_ERR_INVALID_BIT_RANGE);
62 : }
63 :
64 : // read the current value
65 10 : uint8_t currentValue = SPIreadRegister(reg);
66 10 : uint8_t mask = ~((0b11111111 << (msb + 1)) | (0b11111111 >> (8 - lsb)));
67 :
68 : // check if we actually need to update the register
69 10 : if((currentValue & mask) == (value & mask) && !force) {
70 0 : return(RADIOLIB_ERR_NONE);
71 : }
72 :
73 : // update the register
74 10 : uint8_t newValue = (currentValue & ~mask) | (value & mask);
75 10 : SPIwriteRegister(reg, newValue);
76 :
77 : #if RADIOLIB_SPI_PARANOID
78 : // check register value each millisecond until check interval is reached
79 : // some registers need a bit of time to process the change (e.g. SX127X_REG_OP_MODE)
80 10 : RadioLibTime_t start = this->hal->micros();
81 : #if RADIOLIB_DEBUG_SPI
82 : uint8_t readValue = 0x00;
83 : #endif
84 1449 : while(this->hal->micros() - start < (checkInterval * 1000)) {
85 1441 : uint8_t val = SPIreadRegister(reg);
86 1441 : if((val & checkMask) == (newValue & checkMask)) {
87 : // check passed, we can stop the loop
88 2 : return(RADIOLIB_ERR_NONE);
89 : }
90 : #if RADIOLIB_DEBUG_SPI
91 : readValue = val;
92 : #endif
93 : }
94 :
95 : // check failed, print debug info
96 : RADIOLIB_DEBUG_SPI_PRINTLN();
97 : RADIOLIB_DEBUG_SPI_PRINTLN("address:\t0x%X", reg);
98 : RADIOLIB_DEBUG_SPI_PRINTLN("bits:\t\t%d %d", msb, lsb);
99 : RADIOLIB_DEBUG_SPI_PRINTLN("value:\t\t0x%X", value);
100 : RADIOLIB_DEBUG_SPI_PRINTLN("current:\t0x%X", currentValue);
101 : RADIOLIB_DEBUG_SPI_PRINTLN("mask:\t\t0x%X", mask);
102 : RADIOLIB_DEBUG_SPI_PRINTLN("new:\t\t0x%X", newValue);
103 : RADIOLIB_DEBUG_SPI_PRINTLN("read:\t\t0x%X", readValue);
104 :
105 8 : return(RADIOLIB_ERR_SPI_WRITE_FAILED);
106 : #else
107 : return(RADIOLIB_ERR_NONE);
108 : #endif
109 : }
110 :
111 0 : void Module::SPIreadRegisterBurst(uint32_t reg, size_t numBytes, uint8_t* inBytes) {
112 0 : if(!this->spiConfig.stream) {
113 0 : SPItransfer(this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ], reg, NULL, inBytes, numBytes);
114 : } else {
115 : uint8_t cmd[6];
116 0 : uint8_t* cmdPtr = cmd;
117 0 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
118 0 : *(cmdPtr++) = (this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ] >> 8*i) & 0xFF;
119 : }
120 0 : for(int8_t i = (int8_t)((this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8) - 1); i >= 0; i--) {
121 0 : *(cmdPtr++) = (reg >> 8*i) & 0xFF;
122 : }
123 0 : SPItransferStream(cmd, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 + this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8, false, NULL, inBytes, numBytes, true);
124 : }
125 0 : }
126 :
127 1455 : uint8_t Module::SPIreadRegister(uint32_t reg) {
128 1455 : uint8_t resp = 0;
129 1455 : if(!spiConfig.stream) {
130 1036 : SPItransfer(this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ], reg, NULL, &resp, 1);
131 : } else {
132 : uint8_t cmd[6];
133 419 : uint8_t* cmdPtr = cmd;
134 838 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
135 419 : *(cmdPtr++) = (this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ] >> 8*i) & 0xFF;
136 : }
137 1257 : for(int8_t i = (int8_t)((this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8) - 1); i >= 0; i--) {
138 838 : *(cmdPtr++) = (reg >> 8*i) & 0xFF;
139 : }
140 419 : SPItransferStream(cmd, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 + this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8, false, NULL, &resp, 1, true);
141 : }
142 1455 : return(resp);
143 : }
144 :
145 0 : void Module::SPIwriteRegisterBurst(uint32_t reg, const uint8_t* data, size_t numBytes) {
146 0 : if(!spiConfig.stream) {
147 0 : SPItransfer(spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE], reg, data, NULL, numBytes);
148 : } else {
149 : uint8_t cmd[6];
150 0 : uint8_t* cmdPtr = cmd;
151 0 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
152 0 : *(cmdPtr++) = (this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE] >> 8*i) & 0xFF;
153 : }
154 0 : for(int8_t i = (int8_t)((this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8) - 1); i >= 0; i--) {
155 0 : *(cmdPtr++) = (reg >> 8*i) & 0xFF;
156 : }
157 0 : SPItransferStream(cmd, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 + this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8, true, data, NULL, numBytes, true);
158 : }
159 0 : }
160 :
161 10 : void Module::SPIwriteRegister(uint32_t reg, uint8_t data) {
162 10 : if(!spiConfig.stream) {
163 5 : SPItransfer(spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE], reg, &data, NULL, 1);
164 : } else {
165 : uint8_t cmd[6];
166 5 : uint8_t* cmdPtr = cmd;
167 10 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
168 5 : *(cmdPtr++) = (this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE] >> 8*i) & 0xFF;
169 : }
170 15 : for(int8_t i = (int8_t)((this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8) - 1); i >= 0; i--) {
171 10 : *(cmdPtr++) = (reg >> 8*i) & 0xFF;
172 : }
173 5 : SPItransferStream(cmd, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 + this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8, true, &data, NULL, 1, true);
174 : }
175 10 : }
176 :
177 1041 : void Module::SPItransfer(uint16_t cmd, uint32_t reg, const uint8_t* dataOut, uint8_t* dataIn, size_t numBytes) {
178 : // prepare the buffers
179 1041 : size_t buffLen = this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 + this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8 + numBytes;
180 : #if RADIOLIB_STATIC_ONLY
181 : uint8_t buffOut[RADIOLIB_STATIC_ARRAY_SIZE];
182 : uint8_t buffIn[RADIOLIB_STATIC_ARRAY_SIZE];
183 : #else
184 1041 : uint8_t* buffOut = new uint8_t[buffLen];
185 1041 : uint8_t* buffIn = new uint8_t[buffLen];
186 : #endif
187 1041 : uint8_t* buffOutPtr = buffOut;
188 :
189 : // copy the command
190 : // TODO properly handle variable commands and addresses
191 1041 : if(this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR] <= 8) {
192 1041 : *(buffOutPtr++) = reg | cmd;
193 : } else {
194 0 : *(buffOutPtr++) = (reg >> 8) | cmd;
195 0 : *(buffOutPtr++) = reg & 0xFF;
196 : }
197 :
198 : // copy the data
199 1041 : if(cmd == spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE]) {
200 5 : memcpy(buffOutPtr, dataOut, numBytes);
201 : } else {
202 1036 : memset(buffOutPtr, this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_NOP], numBytes);
203 : }
204 :
205 : // do the transfer
206 1041 : this->hal->spiBeginTransaction();
207 1041 : this->hal->digitalWrite(this->csPin, this->hal->GpioLevelLow);
208 1041 : this->hal->spiTransfer(buffOut, buffLen, buffIn);
209 1041 : this->hal->digitalWrite(this->csPin, this->hal->GpioLevelHigh);
210 1041 : this->hal->spiEndTransaction();
211 :
212 : // copy the data
213 1041 : if(cmd == spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ]) {
214 1036 : memcpy(dataIn, &buffIn[this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8], numBytes);
215 : }
216 :
217 : // print debug information
218 : #if RADIOLIB_DEBUG_SPI
219 : const uint8_t* debugBuffPtr = NULL;
220 : if(cmd == spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_WRITE]) {
221 : RADIOLIB_DEBUG_SPI_PRINT("W\t%X\t", reg);
222 : debugBuffPtr = &buffOut[this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8];
223 : } else if(cmd == spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_READ]) {
224 : RADIOLIB_DEBUG_SPI_PRINT("R\t%X\t", reg);
225 : debugBuffPtr = &buffIn[this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_ADDR]/8];
226 : }
227 : for(size_t n = 0; n < numBytes; n++) {
228 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("%X\t", debugBuffPtr[n]);
229 : }
230 : RADIOLIB_DEBUG_SPI_PRINTLN_NOTAG();
231 : #endif
232 :
233 : #if !RADIOLIB_STATIC_ONLY
234 1041 : delete[] buffOut;
235 1041 : delete[] buffIn;
236 : #endif
237 1041 : }
238 :
239 0 : int16_t Module::SPIreadStream(uint16_t cmd, uint8_t* data, size_t numBytes, bool waitForGpio, bool verify) {
240 : uint8_t cmdBuf[2];
241 0 : uint8_t* cmdPtr = cmdBuf;
242 0 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
243 0 : *(cmdPtr++) = (cmd >> 8*i) & 0xFF;
244 : }
245 0 : return(this->SPIreadStream(cmdBuf, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8, data, numBytes, waitForGpio, verify));
246 : }
247 :
248 0 : int16_t Module::SPIreadStream(const uint8_t* cmd, uint8_t cmdLen, uint8_t* data, size_t numBytes, bool waitForGpio, bool verify) {
249 : // send the command
250 0 : int16_t state = this->SPItransferStream(cmd, cmdLen, false, NULL, data, numBytes, waitForGpio);
251 0 : RADIOLIB_ASSERT(state);
252 :
253 : #if !RADIOLIB_SPI_PARANOID
254 : (void)verify;
255 : return(RADIOLIB_ERR_NONE);
256 : #else
257 :
258 : // check the status
259 0 : if(verify && (this->spiConfig.checkStatusCb != nullptr)) {
260 0 : state = this->spiConfig.checkStatusCb(this);
261 : }
262 :
263 0 : return(state);
264 : #endif
265 : }
266 :
267 0 : int16_t Module::SPIwriteStream(uint16_t cmd, const uint8_t* data, size_t numBytes, bool waitForGpio, bool verify) {
268 : uint8_t cmdBuf[2];
269 0 : uint8_t* cmdPtr = cmdBuf;
270 0 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
271 0 : *(cmdPtr++) = (cmd >> 8*i) & 0xFF;
272 : }
273 0 : return(this->SPIwriteStream(cmdBuf, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8, data, numBytes, waitForGpio, verify));
274 : }
275 :
276 0 : int16_t Module::SPIwriteStream(const uint8_t* cmd, uint8_t cmdLen, const uint8_t* data, size_t numBytes, bool waitForGpio, bool verify) {
277 : // send the command
278 0 : int16_t state = this->SPItransferStream(cmd, cmdLen, true, data, NULL, numBytes, waitForGpio);
279 0 : RADIOLIB_ASSERT(state);
280 :
281 : #if !RADIOLIB_SPI_PARANOID
282 : (void)verify;
283 : return(RADIOLIB_ERR_NONE);
284 : #else
285 :
286 : // check the status
287 0 : if(verify && (this->spiConfig.checkStatusCb != nullptr)) {
288 0 : state = this->spiConfig.checkStatusCb(this);
289 : }
290 :
291 0 : return(state);
292 : #endif
293 : }
294 :
295 0 : int16_t Module::SPIcheckStream() {
296 0 : int16_t state = RADIOLIB_ERR_NONE;
297 :
298 : #if RADIOLIB_SPI_PARANOID
299 : // get the status
300 0 : uint8_t spiStatus = 0;
301 : uint8_t cmdBuf[2];
302 0 : uint8_t* cmdPtr = cmdBuf;
303 0 : for(int8_t i = (int8_t)this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8 - 1; i >= 0; i--) {
304 0 : *(cmdPtr++) = ( this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_STATUS] >> 8*i) & 0xFF;
305 : }
306 0 : state = this->SPItransferStream(cmdBuf, this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_CMD]/8, false, NULL, &spiStatus, 1, true);
307 0 : RADIOLIB_ASSERT(state);
308 :
309 : // translate to RadioLib status code
310 0 : if(this->spiConfig.parseStatusCb != nullptr) {
311 0 : this->spiConfig.err = this->spiConfig.parseStatusCb(spiStatus);
312 : }
313 : #endif
314 :
315 0 : return(state);
316 : }
317 :
318 424 : int16_t Module::SPItransferStream(const uint8_t* cmd, uint8_t cmdLen, bool write, const uint8_t* dataOut, uint8_t* dataIn, size_t numBytes, bool waitForGpio) {
319 : // prepare the output buffer
320 424 : size_t buffLen = cmdLen + numBytes;
321 424 : if(!write) {
322 419 : buffLen += (this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_STATUS] / 8);
323 : }
324 : #if RADIOLIB_STATIC_ONLY
325 : uint8_t buffOut[RADIOLIB_STATIC_ARRAY_SIZE];
326 : #else
327 424 : uint8_t* buffOut = new uint8_t[buffLen];
328 : #endif
329 424 : uint8_t* buffOutPtr = buffOut;
330 :
331 : // copy the command
332 1696 : for(uint8_t n = 0; n < cmdLen; n++) {
333 1272 : *(buffOutPtr++) = cmd[n];
334 : }
335 :
336 : // copy the data
337 424 : if(write) {
338 5 : memcpy(buffOutPtr, dataOut, numBytes);
339 : } else {
340 419 : memset(buffOutPtr, this->spiConfig.cmds[RADIOLIB_MODULE_SPI_COMMAND_NOP], numBytes + (this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_STATUS] / 8));
341 : }
342 :
343 : // ensure GPIO is low
344 424 : if(waitForGpio) {
345 424 : if(this->gpioPin == RADIOLIB_NC) {
346 0 : this->hal->delay(50);
347 : } else {
348 424 : RadioLibTime_t start = this->hal->millis();
349 424 : while(this->hal->digitalRead(this->gpioPin)) {
350 0 : this->hal->yield();
351 :
352 : // this timeout check triggers a false positive from cppcheck
353 : // cppcheck-suppress unsignedLessThanZero
354 0 : if(this->hal->millis() - start >= this->spiConfig.timeout) {
355 : RADIOLIB_DEBUG_BASIC_PRINTLN("GPIO pre-transfer timeout, is it connected?");
356 : #if !RADIOLIB_STATIC_ONLY
357 0 : delete[] buffOut;
358 : #endif
359 0 : return(RADIOLIB_ERR_SPI_CMD_TIMEOUT);
360 : }
361 :
362 : }
363 : }
364 : }
365 :
366 : // prepare the input buffer
367 : #if RADIOLIB_STATIC_ONLY
368 : uint8_t buffIn[RADIOLIB_STATIC_ARRAY_SIZE];
369 : #else
370 424 : uint8_t* buffIn = new uint8_t[buffLen];
371 : #endif
372 :
373 : // do the transfer
374 424 : this->hal->spiBeginTransaction();
375 424 : this->hal->digitalWrite(this->csPin, this->hal->GpioLevelLow);
376 424 : this->hal->spiTransfer(buffOut, buffLen, buffIn);
377 424 : this->hal->digitalWrite(this->csPin, this->hal->GpioLevelHigh);
378 424 : this->hal->spiEndTransaction();
379 :
380 : // wait for GPIO to go high and then low
381 424 : if(waitForGpio) {
382 424 : if(this->gpioPin == RADIOLIB_NC) {
383 0 : this->hal->delay(1);
384 : } else {
385 424 : this->hal->delayMicroseconds(1);
386 424 : RadioLibTime_t start = this->hal->millis();
387 424 : while(this->hal->digitalRead(this->gpioPin)) {
388 0 : this->hal->yield();
389 :
390 : // this timeout check triggers a false positive from cppcheck
391 : // cppcheck-suppress unsignedLessThanZero
392 0 : if(this->hal->millis() - start >= this->spiConfig.timeout) {
393 : RADIOLIB_DEBUG_BASIC_PRINTLN("GPIO post-transfer timeout, is it connected?");
394 : #if !RADIOLIB_STATIC_ONLY
395 0 : delete[] buffOut;
396 0 : delete[] buffIn;
397 : #endif
398 0 : return(RADIOLIB_ERR_SPI_CMD_TIMEOUT);
399 : }
400 :
401 : }
402 : }
403 : }
404 :
405 : // parse status
406 424 : int16_t state = RADIOLIB_ERR_NONE;
407 424 : if((this->spiConfig.parseStatusCb != nullptr) && (numBytes > 0)) {
408 0 : state = this->spiConfig.parseStatusCb(buffIn[this->spiConfig.statusPos]);
409 : }
410 :
411 : // copy the data
412 424 : if(!write) {
413 : // skip the status bytes if present
414 419 : memcpy(dataIn, &buffIn[cmdLen + (this->spiConfig.widths[RADIOLIB_MODULE_SPI_WIDTH_STATUS] / 8)], numBytes);
415 : }
416 :
417 : // print debug information
418 : #if RADIOLIB_DEBUG_SPI
419 : // print command byte(s)
420 : RADIOLIB_DEBUG_SPI_PRINT("CMD");
421 : if(write) {
422 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("W\t");
423 : } else {
424 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("R\t");
425 : }
426 : size_t n = 0;
427 : for(; n < cmdLen; n++) {
428 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("%X\t", cmd[n]);
429 : }
430 : RADIOLIB_DEBUG_SPI_PRINTLN_NOTAG();
431 :
432 : // print data bytes
433 : RADIOLIB_DEBUG_SPI_PRINT("SI\t");
434 : for(n = 0; n < cmdLen; n++) {
435 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("\t");
436 : }
437 : for(; n < buffLen; n++) {
438 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("%X\t", buffOut[n]);
439 : }
440 : RADIOLIB_DEBUG_SPI_PRINTLN_NOTAG();
441 : RADIOLIB_DEBUG_SPI_PRINT("SO\t");
442 : for(n = 0; n < buffLen; n++) {
443 : RADIOLIB_DEBUG_SPI_PRINT_NOTAG("%X\t", buffIn[n]);
444 : }
445 : RADIOLIB_DEBUG_SPI_PRINTLN_NOTAG();
446 : #endif
447 :
448 : #if !RADIOLIB_STATIC_ONLY
449 424 : delete[] buffOut;
450 424 : delete[] buffIn;
451 : #endif
452 :
453 424 : return(state);
454 : }
455 :
456 0 : void Module::waitForMicroseconds(RadioLibTime_t start, RadioLibTime_t len) {
457 : #if RADIOLIB_INTERRUPT_TIMING
458 : (void)start;
459 : if((this->TimerSetupCb != nullptr) && (len != this->prevTimingLen)) {
460 : prevTimingLen = len;
461 : this->TimerSetupCb(len);
462 : }
463 : this->TimerFlag = false;
464 : while(!this->TimerFlag) {
465 : this->hal->yield();
466 : }
467 : #else
468 0 : while(this->hal->micros() - start < len) {
469 0 : this->hal->yield();
470 : }
471 : #endif
472 0 : }
473 :
474 : #if RADIOLIB_DEBUG
475 : void Module::regdump(const char* level, uint16_t start, size_t len) {
476 : #if RADIOLIB_STATIC_ONLY
477 : uint8_t buff[RADIOLIB_STATIC_ARRAY_SIZE];
478 : #else
479 : uint8_t* buff = new uint8_t[len];
480 : #endif
481 : SPIreadRegisterBurst(start, len, buff);
482 : rlb_hexdump(level, buff, len, start);
483 : #if !RADIOLIB_STATIC_ONLY
484 : delete[] buff;
485 : #endif
486 : }
487 : #endif
488 :
489 0 : void Module::setRfSwitchPins(uint32_t rxEn, uint32_t txEn) {
490 : // This can be on the stack, setRfSwitchTable copies the contents
491 0 : const uint32_t pins[] = {
492 : rxEn, txEn, RADIOLIB_NC, RADIOLIB_NC, RADIOLIB_NC,
493 0 : };
494 :
495 : // This must be static, since setRfSwitchTable stores a reference.
496 : static const RfSwitchMode_t table[] = {
497 0 : { MODE_IDLE, {this->hal->GpioLevelLow, this->hal->GpioLevelLow} },
498 0 : { MODE_RX, {this->hal->GpioLevelHigh, this->hal->GpioLevelLow} },
499 0 : { MODE_TX, {this->hal->GpioLevelLow, this->hal->GpioLevelHigh} },
500 : END_OF_MODE_TABLE,
501 0 : };
502 0 : setRfSwitchTable(pins, table);
503 0 : }
504 :
505 0 : void Module::setRfSwitchTable(const uint32_t (&pins)[RFSWITCH_MAX_PINS], const RfSwitchMode_t table[]) {
506 0 : memcpy(this->rfSwitchPins, pins, sizeof(this->rfSwitchPins));
507 0 : this->rfSwitchTable = table;
508 0 : for(size_t i = 0; i < RFSWITCH_MAX_PINS; i++) {
509 0 : this->hal->pinMode(pins[i], this->hal->GpioModeOutput);
510 : }
511 0 : }
512 :
513 0 : const Module::RfSwitchMode_t *Module::findRfSwitchMode(uint8_t mode) const {
514 0 : const RfSwitchMode_t *row = this->rfSwitchTable;
515 0 : while(row && row->mode != MODE_END_OF_TABLE) {
516 0 : if(row->mode == mode) {
517 0 : return row;
518 : }
519 0 : ++row;
520 : }
521 0 : return nullptr;
522 : }
523 :
524 0 : void Module::setRfSwitchState(uint8_t mode) {
525 0 : const RfSwitchMode_t *row = findRfSwitchMode(mode);
526 0 : if(!row) {
527 : // RF switch control is disabled or does not have this mode
528 0 : return;
529 : }
530 :
531 : // set pins
532 0 : const uint32_t *value = &row->values[0];
533 0 : for(size_t i = 0; i < RFSWITCH_MAX_PINS; i++) {
534 0 : uint32_t pin = this->rfSwitchPins[i];
535 0 : if(!(pin & RFSWITCH_PIN_FLAG)) {
536 0 : this->hal->digitalWrite(pin, *value);
537 : }
538 0 : ++value;
539 : }
540 : }
|